Loading report..

Highlight Samples

Regex mode off

    Rename Samples

    Click here for bulk input.

    Paste two columns of a tab-delimited table here (eg. from Excel).

    First column should be the old name, second column the new name.

    Regex mode off

      Show / Hide Samples

      Warning! This can take a few seconds.

      Regex mode off

        Export Plots

        px
        px
        X

        Download the raw data used to create the plots in this report below:

        Note that additional data was saved in DAY_final_multiqc_data when this report was generated.


        Choose Plots

        If you use plots from MultiQC in a publication or presentation, please cite:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        Save Settings

        You can save the toolbox settings for this report to the browser.


        Load Settings

        Choose a saved report profile from the dropdown box below:

        Tool Citations

        Please remember to cite the tools that you use in your analysis.

        To help with this, you can download publication details of the tools mentioned in this report:

        About MultiQC

        This report was generated using MultiQC, version 1.14

        You can see a YouTube video describing how to use MultiQC reports here: https://youtu.be/qPbIlO_KWN0

        For more information about MultiQC, including other videos and extensive documentation, please visit http://multiqc.info

        You can report bugs, suggest improvements and find the source code for MultiQC on GitHub: https://github.com/ewels/MultiQC

        MultiQC is published in Bioinformatics:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.

        Report generated on 2023-05-03, 22:24 UTC based on data in: /fsx/analysis_results/centos/subsamp_b37/daylily/results/day/b37


        General Statistics

        Showing 6/8 rows and 42/58 columns.
        Sample NameInsertSizeMeanInsertSizeMedianInsertSizeModeInsert Size≥ 5XMean Insert SizeMedian% MappedContamination (S)M Reads% Aligned≥ 1X≥ 30XMean Cov.Family IDAncestryP(Ancestry)Sex / Het RatioCorrect SexSex% GCIns. size≥ 1X≥ 5X≥ 10X≥ 30X≥ 50XMedian covMean cov% AlignedM AlignedM Total readsError rateVarsSNPIndelTs/TvM Non-Primary% Proper PairsM Total seqsM Reads MappedError rate
        HG002.novaseq.pcr-free.30x.R1
        HG002.novaseq.pcr-free.30x.R2
        RIH0_ANA0-HG002-19-10x
        413.8
        377.0
        283.0
        379 bp
        94.0%
        415 bp
        11.0X
        99.6%
        0.552%
        2.0
        100%
        97.0%
        10.8X
        RIH0_ANA0-HG002-19-10x_DBC0_0
        EUR
        1.0
        0.1
        True
        male
        42%
        375
        92.2%
        88.4%
        60.9%
        0.3%
        0.1%
        11.0X
        11.2X
        99.6%
        233.8
        234.8
        0.74%
        8,447,878
        7,466,122
        985,626
        0.67
        0.0
        97.2%
        234.8
        235.5
        0.74%
        RIH0_ANA0-HG002-19-15x
        414.2
        377.0
        283.0
        379 bp
        92.0%
        415 bp
        16.0X
        99.6%
        0.562%
        2.0
        100%
        92.0%
        1.0%
        16.6X
        RIH0_ANA0-HG002-19-15x_DBC0_0
        EUR
        1.0
        0.1
        True
        male
        42%
        375
        92.3%
        91.5%
        85.1%
        2.1%
        0.3%
        17.0X
        17.0X
        99.6%
        354.3
        355.8
        0.74%
        9,160,754
        8,022,998
        1,142,556
        0.62
        0.0
        97.2%
        355.8
        356.8
        0.74%
        RIH0_ANA0-HG002-19-20x
        414.6
        377.0
        283.0
        378 bp
        97.0%
        414 bp
        21.0X
        99.6%
        0.561%
        2.0
        100%
        97.0%
        8.0%
        21.2X
        RIH0_ANA0-HG002-19-20x_DBC0_0
        EUR
        1.0
        0.1
        True
        male
        42%
        375
        92.3%
        92.0%
        89.9%
        15.3%
        0.5%
        22.0X
        22.8X
        99.6%
        474.7
        476.8
        0.74%
        8,696,778
        7,453,936
        1,248,012
        0.69
        0.0
        97.2%
        476.8
        478.1
        0.74%
        RIH0_ANA0-HG002-19-25x
        414.9
        377.0
        283.0
        378 bp
        92.0%
        414 bp
        27.0X
        99.6%
        0.568%
        2.0
        100%
        92.0%
        24.0%
        21.8X
        RIH0_ANA0-HG002-19-25x_DBC0_0
        EUR
        1.0
        0.1
        True
        male
        42%
        375
        92.3%
        92.2%
        91.3%
        43.3%
        1.2%
        28.0X
        28.6X
        99.6%
        595.1
        597.7
        0.74%
        8,355,246
        7,048,514
        1,312,102
        0.75
        0.0
        97.2%
        597.7
        599.4
        0.74%
        RIH0_ANA0-HG002-19-30x
        415.1
        378.0
        283.0
        378 bp
        92.0%
        413 bp
        31.0X
        99.6%
        0.584%
        2.0
        100%
        92.0%
        64.0%
        23.4X
        RIH0_ANA0-HG002-19-30x_DBC0_0
        EUR
        1.0
        0.0
        True
        male
        42%
        375
        92.3%
        92.2%
        91.8%
        67.0%
        4.7%
        34.0X
        34.0X
        99.6%
        708.5
        711.6
        0.74%
        8,115,213
        6,790,487
        1,330,271
        0.80
        0.0
        97.2%
        711.6
        713.6
        0.74%
        RIH0_ANA0-HG002-19-5x
        413.4
        376.0
        283.0
        379 bp
        68.0%
        415 bp
        6.0X
        99.6%
        0.490%
        2.0
        100%
        93.0%
        5.7X
        RIH0_ANA0-HG002-19-5x_DBC0_0
        EUR
        1.0
        0.2
        True
        male
        42%
        375
        91.4%
        61.0%
        9.9%
        0.1%
        0.1%
        5.0X
        5.8X
        99.6%
        120.4
        121.0
        0.74%
        5,459,824
        4,763,751
        697,972
        1.07
        0.0
        97.2%
        121.0
        121.3
        0.74%

        Norm Cov Evenness

        loading..

        Giabhcr Concordance

        Showing 6/6 rows and 18/18 columns.
        SampleSNPClassTgtRegionSizeTNFNTPFPFscoreSensitivity-RecallSpecificityFDRPPVPrecisionAltIdCmpFootprintAllVarMeanDPCovBinAlignerSNVCaller
        RIH0_ANA0-HG002-19-10x_DBC0_0
        All
        2,525,727,871.0
        2,521,853,171.0
        138,015.0
        3,736,685.0
        17,977.0
        1.0
        1.0
        1.0
        0.0
        1.0
        1.0
        HG002
        wgsHC
        -1.0
        -2.0
        bwa2b
        deep
        RIH0_ANA0-HG002-19-15x_DBC0_0
        All
        2,525,727,871.0
        2,521,853,214.0
        44,414.0
        3,830,243.0
        12,818.0
        1.0
        1.0
        1.0
        0.0
        1.0
        1.0
        HG002
        wgsHC
        -1.0
        -2.0
        bwa2b
        deep
        RIH0_ANA0-HG002-19-20x_DBC0_0
        All
        2,525,727,871.0
        2,521,853,297.0
        26,707.0
        3,847,867.0
        8,517.0
        1.0
        1.0
        1.0
        0.0
        1.0
        1.0
        HG002
        wgsHC
        -1.0
        -2.0
        bwa2b
        deep
        RIH0_ANA0-HG002-19-25x_DBC0_0
        All
        2,525,727,871.0
        2,521,853,356.0
        21,743.0
        3,852,772.0
        5,775.0
        1.0
        1.0
        1.0
        0.0
        1.0
        1.0
        HG002
        wgsHC
        -1.0
        -2.0
        bwa2b
        deep
        RIH0_ANA0-HG002-19-30x_DBC0_0
        All
        2,525,727,871.0
        2,521,853,400.0
        19,944.0
        3,854,527.0
        4,159.0
        1.0
        1.0
        1.0
        0.0
        1.0
        1.0
        HG002
        wgsHC
        -1.0
        -2.0
        bwa2b
        deep
        RIH0_ANA0-HG002-19-5x_DBC0_0
        All
        2,525,727,871.0
        2,521,853,088.0
        693,693.0
        3,181,090.0
        20,452.0
        0.9
        0.8
        1.0
        0.0
        1.0
        1.0
        HG002
        wgsHC
        -1.0
        -2.0
        bwa2b
        deep

        Alignstats

        Showing 6/6 rows and 166/166 columns.
        samplealignerAlignedBasesAlignedBasesPctAlignedReadLengthMeanAlignedReadLengthMedianAlignedReadLengthModeAlignedReadLengthStandardDeviationChimericReadPairPctDeletedBasesDeletedBasesPctDuplicateBasesDuplicateBasesPctDuplicateReadsDuplicateReadsPctFilteredRecordsFilteredRecordsPctInputFileNameInputFileSizeInsertSizeMeanInsertSizeMedianInsertSizeModeInsertSizeStandardDeviationInsertedBasesInsertedBasesPctMappedBasesMappedBasesPctMappedReadsMappedReadsPctMatchedBasesMatchedBasesPctMismatchedBasesMismatchedBasesPctPerfectBasesPerfectBasesPctPerfectReadsPerfectReadsPctQ20BasesQ20BasesPctR1AlignedBasesR1AlignedBasesPctR1AlignedReadLengthMeanR1AlignedReadLengthMedianR1AlignedReadLengthModeR1AlignedReadLengthStandardDeviationR1DeletedBasesR1DeletedBasesPctR1InsertedBasesR1InsertedBasesPctR1MappedBasesR1MappedBasesPctR1MappedReadsR1MappedReadsPctR1MatchedBasesR1MatchedBasesPctR1MismatchedBasesR1MismatchedBasesPctR1PerfectBasesR1PerfectBasesPctR1PerfectReadsR1PerfectReadsPctR1Q20BasesR1Q20BasesPctR1SoftClippedBasesR1SoftClippedBasesPctR1SoftClippedReadsR1SoftClippedReadsPctR1UnmappedBasesR1UnmappedBasesPctR1UnmappedReadsR1UnmappedReadsPctR1UnpairedReadsR1UnpairedReadsPctR1YieldBasesR1YieldReadsR2AlignedBasesR2AlignedBasesPctR2AlignedReadLengthMeanR2AlignedReadLengthMedianR2AlignedReadLengthModeR2AlignedReadLengthStandardDeviationR2DeletedBasesR2DeletedBasesPctR2InsertedBasesR2InsertedBasesPctR2MappedBasesR2MappedBasesPctR2MappedReadsR2MappedReadsPctR2MatchedBasesR2MatchedBasesPctR2MismatchedBasesR2MismatchedBasesPctR2PerfectBasesR2PerfectBasesPctR2PerfectReadsR2PerfectReadsPctR2Q20BasesR2Q20BasesPctR2SoftClippedBasesR2SoftClippedBasesPctR2SoftClippedReadsR2SoftClippedReadsPctR2UnmappedBasesR2UnmappedBasesPctR2UnmappedReadsR2UnmappedReadsPctR2UnpairedReadsR2UnpairedReadsPctR2YieldBasesR2YieldReadsSoftClippedBasesSoftClippedBasesPctSoftClippedReadsSoftClippedReadsPctTotalPairsTotalRecordsTotalSameChrPairsTotalSameChrPairsPctUnfilteredRecordsUnfilteredRecordsPctUnmappedBasesUnmappedBasesPctUnmappedReadsUnmappedReadsPctUnpairedReadsUnpairedReadsPctWgsAlignedReadsWgsAlignedReadsPctWgsCalculatedAlignedReadsWgsCovDuplicateReadsWgsCovDuplicateReadsPctWgsCoverageBases1WgsCoverageBases10WgsCoverageBases100WgsCoverageBases1000WgsCoverageBases1000PctWgsCoverageBases100PctWgsCoverageBases10PctWgsCoverageBases15WgsCoverageBases15PctWgsCoverageBases1PctWgsCoverageBases20WgsCoverageBases20PctWgsCoverageBases30WgsCoverageBases30PctWgsCoverageBases40WgsCoverageBases40PctWgsCoverageBases50WgsCoverageBases500WgsCoverageBases500PctWgsCoverageBases50PctWgsCoverageBases60WgsCoverageBases60PctWgsCoverageBases70WgsCoverageBases70PctWgsCoverageMeanWgsCoverageMedianWgsCoverageStandardDeviationWgsExpectedAlignedReadsWgsFilteredLowBaseQualityBasesWgsFilteredOverlapBasesWgsReadsPairedWgsReadsPairedWithMatesWgsTotalReadsYieldBasesYieldReads
        RIH0_ANA0-HG002-19-10x
        bwa2b
        34,817,018,247.0
        97.5
        147.9
        151.0
        151.0
        15.6
        2.7
        14,478,827.0
        0.0
        1,340,785,625.0
        3.8
        8,879,375.0
        3.8
        0.0
        0.0
        results/day/b37/RIH0_ANA0-HG002-19-10x/align/bwa2b/RIH0_ANA0-HG002-19-10x.bwa2b.mrkdup.sort.bam
        15,394,126,878.0
        413.8
        377.0
        283.0
        179.5
        15,289,510.0
        0.0
        35,557,743,495.0
        99.6
        235,481,745.0
        99.6
        34,557,870,934.0
        99.3
        243,857,803.0
        0.7
        24,057,666,328.0
        67.7
        160,884,305.0
        68.3
        33,811,634,699.0
        97.1
        17,476,482,978.0
        98.0
        148.4
        151.0
        151.0
        14.1
        7,324,611.0
        0.0
        7,687,495.0
        0.0
        17,787,619,404.0
        99.7
        117,798,804.0
        99.7
        17,360,627,304.0
        99.3
        108,168,179.0
        0.6
        12,506,292,613.0
        70.3
        83,465,601.0
        70.9
        17,043,988,740.0
        97.5
        311,136,426.0
        1.7
        6,659,987.0
        5.7
        51,070,767.0
        0.3
        338,217.0
        0.3
        400,387.0
        0.3
        17,838,690,171.0
        118,137,021.0
        17,340,535,269.0
        97.0
        147.3
        151.0
        151.0
        16.9
        7,154,216.0
        0.0
        7,602,015.0
        0.0
        17,770,124,091.0
        99.4
        117,682,941.0
        99.4
        17,197,243,630.0
        99.2
        135,689,624.0
        0.8
        11,551,373,715.0
        65.0
        77,418,704.0
        65.8
        16,767,645,959.0
        96.7
        429,588,822.0
        2.4
        8,603,633.0
        7.3
        102,829,339.0
        0.6
        680,989.0
        0.6
        70,715.0
        0.1
        17,872,953,430.0
        118,363,930.0
        740,725,248.0
        2.1
        15,263,620.0
        6.5
        117,612,226.0
        236,500,951.0
        115,124,903.0
        97.3
        236,500,951.0
        100.0
        153,900,106.0
        0.4
        1,019,206.0
        0.4
        280,602.0
        0.2
        235,481,745.0
        99.6
        226,602,370.0
        8,879,375.0
        3.8
        2,860,529,749.0
        1,813,212,190.0
        1,586,172.0
        331,692.0
        0.0
        0.1
        58.5
        538,868,963.0
        17.4
        92.2
        80,662,036.0
        2.6
        9,867,059.0
        0.3
        5,882,476.0
        0.2
        4,077,436.0
        520,570.0
        0.0
        0.1
        3,067,396.0
        0.1
        2,437,175.0
        0.1
        10.8
        10.0
        88.0
        235,481,745.0
        0.0
        0.0
        235,481,745.0
        234,988,586.0
        236,500,951.0
        35,711,643,601.0
        236,500,951.0
        RIH0_ANA0-HG002-19-15x
        bwa2b
        52,754,471,245.0
        97.5
        147.9
        151.0
        151.0
        15.6
        2.7
        21,936,874.0
        0.0
        2,947,219,812.0
        5.5
        19,518,012.0
        5.5
        0.0
        0.0
        results/day/b37/RIH0_ANA0-HG002-19-15x/align/bwa2b/RIH0_ANA0-HG002-19-15x.bwa2b.mrkdup.sort.bam
        22,212,096,197.0
        414.2
        377.0
        283.0
        179.7
        23,169,620.0
        0.0
        53,877,096,564.0
        99.6
        356,801,964.0
        99.6
        52,361,826,707.0
        99.3
        369,474,918.0
        0.7
        36,453,373,116.0
        67.7
        243,780,205.0
        68.3
        51,231,283,159.0
        97.1
        26,480,171,927.0
        98.0
        148.4
        151.0
        151.0
        14.1
        11,090,488.0
        0.0
        11,646,850.0
        0.0
        26,951,559,348.0
        99.7
        178,487,148.0
        99.7
        26,304,639,099.0
        99.3
        163,885,978.0
        0.6
        18,950,321,178.0
        70.3
        126,471,507.0
        70.9
        25,824,949,260.0
        97.5
        471,387,421.0
        1.7
        10,091,063.0
        5.7
        77,350,958.0
        0.3
        512,258.0
        0.3
        605,697.0
        0.3
        27,028,910,306.0
        178,999,406.0
        26,274,299,318.0
        97.0
        147.3
        151.0
        151.0
        16.9
        10,846,386.0
        0.0
        11,522,770.0
        0.0
        26,925,537,216.0
        99.4
        178,314,816.0
        99.4
        26,057,187,608.0
        99.2
        205,588,940.0
        0.8
        17,503,051,938.0
        65.0
        117,308,698.0
        65.8
        25,406,333,899.0
        96.7
        651,237,898.0
        2.4
        13,039,561.0
        7.3
        155,611,691.0
        0.6
        1,030,541.0
        0.6
        107,374.0
        0.1
        27,081,148,907.0
        179,345,357.0
        1,122,625,319.0
        2.1
        23,130,624.0
        6.5
        178,207,442.0
        358,344,763.0
        174,439,891.0
        97.3
        358,344,763.0
        100.0
        232,962,649.0
        0.4
        1,542,799.0
        0.4
        424,844.0
        0.2
        356,801,964.0
        99.6
        337,283,952.0
        19,518,012.0
        5.4
        2,862,435,320.0
        2,610,066,017.0
        2,566,337.0
        432,519.0
        0.0
        0.1
        84.1
        1,835,504,440.0
        59.2
        92.3
        757,211,644.0
        24.4
        39,888,083.0
        1.3
        11,682,144.0
        0.4
        7,786,007.0
        665,983.0
        0.0
        0.3
        5,717,785.0
        0.2
        4,455,555.0
        0.1
        16.1
        16.0
        120.7
        356,801,964.0
        0.0
        0.0
        356,801,964.0
        356,055,662.0
        358,344,763.0
        54,110,059,213.0
        358,344,763.0
        RIH0_ANA0-HG002-19-20x
        bwa2b
        70,691,818,722.0
        97.5
        147.9
        151.0
        151.0
        15.6
        2.7
        29,388,324.0
        0.0
        5,125,351,626.0
        7.1
        33,942,726.0
        7.1
        0.0
        0.0
        results/day/b37/RIH0_ANA0-HG002-19-20x/align/bwa2b/RIH0_ANA0-HG002-19-20x.bwa2b.mrkdup.sort.bam
        29,001,567,674.0
        414.6
        377.0
        283.0
        179.9
        31,042,170.0
        0.0
        72,195,780,552.0
        99.6
        478,117,752.0
        99.6
        70,165,679,878.0
        99.3
        495,096,674.0
        0.7
        48,846,358,199.0
        67.7
        326,656,032.0
        68.3
        68,650,722,208.0
        97.1
        35,483,765,853.0
        98.0
        148.4
        151.0
        151.0
        14.1
        14,860,719.0
        0.0
        15,609,041.0
        0.0
        36,115,298,613.0
        99.7
        239,174,163.0
        99.7
        35,248,544,627.0
        99.3
        219,612,185.0
        0.6
        25,392,782,256.0
        70.3
        169,466,978.0
        70.9
        34,605,761,428.0
        97.5
        631,532,760.0
        1.7
        13,521,995.0
        5.7
        103,599,137.0
        0.3
        686,087.0
        0.3
        811,706.0
        0.3
        36,218,897,750.0
        239,860,250.0
        35,208,052,869.0
        97.0
        147.3
        151.0
        151.0
        16.9
        14,527,605.0
        0.0
        15,433,129.0
        0.0
        36,080,481,939.0
        99.4
        238,943,589.0
        99.4
        34,917,135,251.0
        99.2
        275,484,489.0
        0.8
        23,453,575,943.0
        65.0
        157,189,054.0
        65.8
        34,044,960,780.0
        96.7
        872,429,070.0
        2.4
        17,473,969.0
        7.3
        208,490,381.0
        0.6
        1,380,731.0
        0.6
        143,615.0
        0.1
        36,288,972,320.0
        240,324,320.0
        1,503,961,830.0
        2.1
        30,995,964.0
        6.5
        238,799,974.0
        480,184,570.0
        233,751,564.0
        97.3
        480,184,570.0
        100.0
        312,089,518.0
        0.4
        2,066,818.0
        0.4
        569,025.0
        0.2
        478,117,752.0
        99.6
        444,175,026.0
        33,942,726.0
        7.1
        2,862,888,002.0
        2,774,338,246.0
        3,910,819.0
        517,032.0
        0.0
        0.1
        89.4
        2,518,027,421.0
        81.2
        92.3
        1,829,311,242.0
        59.0
        287,418,569.0
        9.3
        26,152,741.0
        0.8
        12,639,646.0
        789,408.0
        0.0
        0.4
        9,106,406.0
        0.3
        6,963,835.0
        0.2
        21.2
        21.0
        150.3
        478,117,752.0
        0.0
        0.0
        478,117,752.0
        477,117,942.0
        480,184,570.0
        72,507,870,070.0
        480,184,570.0
        RIH0_ANA0-HG002-19-25x
        bwa2b
        88,623,101,573.0
        97.5
        147.9
        151.0
        151.0
        15.6
        2.7
        36,842,245.0
        0.0
        7,845,079,066.0
        8.7
        51,954,166.0
        8.7
        0.0
        0.0
        results/day/b37/RIH0_ANA0-HG002-19-25x/align/bwa2b/RIH0_ANA0-HG002-19-25x.bwa2b.mrkdup.sort.bam
        35,778,523,537.0
        414.9
        377.0
        283.0
        180.1
        38,930,557.0
        0.0
        90,508,331,675.0
        99.6
        599,392,925.0
        99.6
        87,963,459,643.0
        99.3
        620,711,373.0
        0.7
        61,235,515,723.0
        67.7
        409,506,511.0
        68.3
        86,064,122,062.0
        97.1
        44,484,418,448.0
        98.0
        148.4
        151.0
        151.0
        14.1
        18,636,376.0
        0.0
        19,580,473.0
        0.0
        45,276,027,391.0
        99.7
        299,841,241.0
        99.7
        44,189,508,660.0
        99.3
        275,329,315.0
        0.6
        31,833,668,052.0
        70.3
        212,451,760.0
        70.9
        43,383,647,690.0
        97.5
        791,608,943.0
        1.7
        16,950,091.0
        5.7
        129,845,504.0
        0.3
        859,904.0
        0.3
        1,017,368.0
        0.3
        45,405,872,895.0
        300,701,145.0
        44,138,683,125.0
        97.0
        147.3
        151.0
        151.0
        16.9
        18,205,869.0
        0.0
        19,350,084.0
        0.0
        45,232,304,284.0
        99.4
        299,551,684.0
        99.4
        43,773,950,983.0
        99.2
        345,382,058.0
        0.8
        29,401,847,671.0
        65.0
        197,054,751.0
        65.8
        42,680,474,372.0
        96.7
        1,093,621,159.0
        2.4
        21,905,716.0
        7.3
        261,353,216.0
        0.6
        1,730,816.0
        0.6
        179,618.0
        0.1
        45,493,657,500.0
        301,282,500.0
        1,885,230,102.0
        2.1
        38,855,807.0
        6.5
        299,372,066.0
        601,983,645.0
        293,042,768.0
        97.3
        601,983,645.0
        100.0
        391,198,720.0
        0.4
        2,590,720.0
        0.4
        713,448.0
        0.2
        599,392,925.0
        99.6
        547,438,759.0
        51,954,166.0
        8.6
        2,863,112,361.0
        2,823,287,253.0
        5,444,291.0
        590,174.0
        0.0
        0.2
        91.0
        2,709,860,246.0
        87.4
        92.3
        2,441,185,433.0
        78.7
        965,691,167.0
        31.1
        115,085,950.0
        3.7
        21,043,683.0
        904,811.0
        0.0
        0.7
        13,156,876.0
        0.4
        10,003,189.0
        0.3
        26.1
        26.0
        177.6
        599,392,925.0
        0.0
        0.0
        599,392,925.0
        598,140,251.0
        601,983,645.0
        90,899,530,395.0
        601,983,645.0
        RIH0_ANA0-HG002-19-30x
        bwa2b
        105,507,381,170.0
        97.5
        147.9
        151.0
        151.0
        15.6
        2.8
        43,859,437.0
        0.0
        10,880,162,607.0
        10.1
        72,054,057.0
        10.1
        0.0
        0.0
        results/day/b37/RIH0_ANA0-HG002-19-30x/align/bwa2b/RIH0_ANA0-HG002-19-30x.bwa2b.mrkdup.sort.bam
        42,138,253,023.0
        415.1
        378.0
        283.0
        180.3
        46,349,174.0
        0.0
        107,751,491,285.0
        99.6
        713,586,035.0
        99.6
        104,722,120,970.0
        99.3
        738,911,026.0
        0.7
        72,903,186,675.0
        67.7
        487,533,937.0
        68.3
        102,460,629,933.0
        97.1
        52,959,480,412.0
        98.0
        148.4
        151.0
        151.0
        14.1
        22,181,414.0
        0.0
        23,309,619.0
        0.0
        53,901,894,388.0
        99.7
        356,966,188.0
        99.7
        52,608,414,955.0
        99.3
        327,755,838.0
        0.6
        37,899,470,814.0
        70.3
        252,934,768.0
        70.9
        51,648,862,309.0
        97.5
        942,413,976.0
        1.7
        20,177,603.0
        5.7
        154,554,389.0
        0.3
        1,023,539.0
        0.3
        1,211,153.0
        0.3
        54,056,448,777.0
        357,989,727.0
        52,547,900,758.0
        97.0
        147.3
        151.0
        151.0
        16.9
        21,678,023.0
        0.0
        23,039,555.0
        0.0
        53,849,596,897.0
        99.4
        356,619,847.0
        99.4
        52,113,706,015.0
        99.2
        411,155,188.0
        0.8
        35,003,715,861.0
        65.0
        234,599,169.0
        65.8
        50,811,767,624.0
        96.7
        1,301,696,139.0
        2.4
        26,074,990.0
        7.3
        311,148,335.0
        0.6
        2,060,585.0
        0.6
        213,497.0
        0.1
        54,160,745,232.0
        358,680,432.0
        2,244,110,115.0
        2.1
        46,252,593.0
        6.5
        356,406,350.0
        716,670,159.0
        348,872,233.0
        97.3
        716,670,159.0
        100.0
        465,702,724.0
        0.4
        3,084,124.0
        0.4
        849,432.0
        0.2
        713,586,035.0
        99.6
        641,531,978.0
        72,054,057.0
        10.1
        2,863,245,843.0
        2,843,359,811.0
        7,084,561.0
        652,098.0
        0.0
        0.2
        91.7
        2,773,612,008.0
        89.4
        92.3
        2,645,688,357.0
        85.3
        1,719,936,983.0
        55.4
        404,526,659.0
        13.0
        51,140,672.0
        1,006,261.0
        0.0
        1.6
        18,421,848.0
        0.6
        13,205,799.0
        0.4
        30.6
        31.0
        201.6
        713,586,035.0
        0.0
        0.0
        713,586,035.0
        712,095,239.0
        716,670,159.0
        108,217,194,009.0
        716,670,159.0
        RIH0_ANA0-HG002-19-5x
        bwa2b
        17,935,223,273.0
        97.5
        147.9
        151.0
        151.0
        15.6
        2.7
        7,454,138.0
        0.0
        380,136,762.0
        2.1
        2,517,462.0
        2.1
        0.0
        0.0
        results/day/b37/RIH0_ANA0-HG002-19-5x/align/bwa2b/RIH0_ANA0-HG002-19-5x.bwa2b.mrkdup.sort.bam
        8,789,067,503.0
        413.4
        376.0
        283.0
        179.4
        7,875,106.0
        0.0
        18,316,859,002.0
        99.6
        121,303,702.0
        99.6
        17,801,707,307.0
        99.3
        125,640,860.0
        0.7
        12,392,731,179.0
        67.7
        82,875,400.0
        68.3
        17,417,370,184.0
        97.1
        9,002,494,706.0
        98.0
        148.4
        151.0
        151.0
        14.1
        3,769,647.0
        0.0
        3,956,854.0
        0.0
        9,162,899,705.0
        99.7
        60,681,455.0
        99.7
        8,942,817,440.0
        99.3
        55,720,412.0
        0.6
        6,442,700,662.0
        70.3
        42,997,764.0
        70.9
        8,779,758,443.0
        97.5
        160,404,999.0
        1.8
        3,432,111.0
        5.7
        26,327,907.0
        0.3
        174,357.0
        0.3
        205,964.0
        0.3
        9,189,227,612.0
        60,855,812.0
        8,932,728,567.0
        97.0
        147.4
        151.0
        151.0
        16.9
        3,684,491.0
        0.0
        3,918,252.0
        0.0
        9,153,959,297.0
        99.4
        60,622,247.0
        99.4
        8,858,889,867.0
        99.2
        69,920,448.0
        0.8
        5,950,030,517.0
        65.0
        39,877,636.0
        65.8
        8,637,611,741.0
        96.7
        221,230,730.0
        2.4
        4,430,699.0
        7.3
        52,918,403.0
        0.6
        350,453.0
        0.6
        36,741.0
        0.1
        9,206,877,700.0
        60,972,700.0
        381,635,729.0
        2.1
        7,862,810.0
        6.5
        60,585,506.0
        121,828,512.0
        59,304,387.0
        97.3
        121,828,512.0
        100.0
        79,246,310.0
        0.4
        524,810.0
        0.4
        144,489.0
        0.2
        121,303,702.0
        99.6
        118,786,240.0
        2,517,462.0
        2.1
        2,835,693,935.0
        277,407,135.0
        941,991.0
        189,420.0
        0.0
        0.0
        8.9
        19,924,388.0
        0.6
        91.4
        6,866,217.0
        0.2
        3,402,678.0
        0.1
        2,213,673.0
        0.1
        1,684,709.0
        342,282.0
        0.0
        0.1
        1,395,068.0
        0.0
        1,214,370.0
        0.0
        5.7
        5.0
        52.1
        121,303,702.0
        0.0
        0.0
        121,303,702.0
        121,049,557.0
        121,828,512.0
        18,396,105,312.0
        121,828,512.0

        Rules Benchmarkdata

        Showing 14/14 rows and 13/13 columns.
        samplerulesh:m:smax_rssmax_vmsmax_ussmax_pssio_inio_outmean_loadcpu_timerule_prefixrule_suffix
        all.
        alignstats_smmary_compile
        0.7
        0:00:00
        9.3
        345.9
        6.6
        6.8
        5.1
        0.0
        0.0
        0.0
        alignstats_smmary_compile
        SEQQC-multiqc_.
        raw_fastqc
        141.4
        0:02:21
        179.0
        1,078.9
        176.6
        177.0
        199.1
        1.8
        55.2
        78.1
        raw_fastqc
        RIH0_ANA0-HG002-19-15x
        bwa2b.deep.18
        324.5
        0:05:24
        61,594.2
        404,361.0
        47,431.2
        47,522.1
        1,983.5
        5,370.9
        2,337.2
        164.9
        bwa2b
        deep.18
        RIH0_ANA0-HG002-19-10x
        bwa2b.deep.merge
        67.6
        0:01:07
        94.4
        3,550.3
        97.9
        98.2
        483.6
        743.2
        23.4
        3.6
        bwa2b
        deep.merge
        RIH0_ANA0-HG002-19-30x
        bwa2b.deep.1
        746.8
        0:12:26
        61,484.8
        408,854.4
        47,324.0
        47,414.9
        4,132.8
        8,023.8
        5,751.6
        206.0
        bwa2b
        deep.1
        results/day/b37/RIH0_ANA0-HG002-19-25x_DBC0_0/align/bwa2b/snv/deep/concordance/logs/RIH0_ANA0-HG002-19-25xbwa2b.deep.concordance.bench.tsv
        325.1
        0:05:25
        57,188.4
        246,462.2
        57,188.8
        57,189.3
        1,492.3
        670.4
        133.4
        433.8
        325.0
        605.0
        results/day/b37/RIH0_ANA0-HG002-19-15x_DBC0_0/align/bwa2b/snv/deep/concordance/logs/RIH0_ANA0-HG002-19-15xbwa2b.deep.concordance.bench.tsv
        323.4
        0:05:23
        53,319.8
        246,526.2
        53,319.9
        53,320.4
        1,241.9
        679.9
        134.8
        436.2
        323.0
        4,095.0
        results/day/b37/RIH0_ANA0-HG002-19-10x_DBC0_0/align/bwa2b/snv/deep/concordance/logs/RIH0_ANA0-HG002-19-10xbwa2b.deep.concordance.bench.tsv
        326.6
        0:05:26
        67,049.8
        246,654.2
        67,050.1
        67,050.6
        1,480.3
        647.4
        131.5
        429.6
        326.0
        6,325.0
        RIH0_ANA0-HG002-19-5x
        bwa2b.qmap
        451.8
        0:07:31
        21,106.0
        161,520.1
        21,103.0
        21,103.4
        2,020.2
        0.5
        366.6
        1,655.4
        bwa2b
        qmap
        RIH0_ANA0-HG002-19-20x
        bwa2b.deep.bcfstat
        8.2
        0:00:08
        11.9
        3,183.5
        10.9
        11.1
        145.4
        0.0
        91.4
        7.5
        bwa2b
        deep.bcfstat
        results/day/b37/RIH0_ANA0-HG002-19-5x_DBC0_0/align/bwa2b/snv/deep/concordance/logs/RIH0_ANA0-HG002-19-5xbwa2b.deep.concordance.bench.tsv
        328.0
        0:05:28
        41,927.8
        246,654.2
        41,928.2
        41,928.7
        1,152.5
        427.8
        87.7
        286.7
        328.0
        283.0
        results/day/b37/RIH0_ANA0-HG002-19-30x_DBC0_0/align/bwa2b/snv/deep/concordance/logs/RIH0_ANA0-HG002-19-30xbwa2b.deep.concordance.bench.tsv
        324.6
        0:05:24
        65,313.2
        246,334.2
        65,312.5
        65,313.0
        97.8
        464.1
        95.7
        311.0
        324.0
        5,566.0
        RIH0_ANA0-HG002-19-25x
        bwa2b.deep.5
        582.4
        0:09:42
        61,461.5
        406,857.5
        47,301.2
        47,392.1
        2,735.4
        6,966.1
        4,657.4
        202.4
        bwa2b
        deep.5
        results/day/b37/RIH0_ANA0-HG002-19-20x_DBC0_0/align/bwa2b/snv/deep/concordance/logs/RIH0_ANA0-HG002-19-20xbwa2b.deep.concordance.bench.tsv
        310.5
        0:05:10
        54,273.0
        246,590.2
        54,272.7
        54,273.2
        1,163.8
        484.8
        98.1
        304.5
        310.0
        4,560.0

        VerifyBAMID

        VerifyBAMID detects sample contamination and/or sample swaps.DOI: 10.1016/j.ajhg.2012.09.004.

        The following values provide estimates of sample contamination. Click help for more information.

        Please note that FREEMIX is named Contamination (Seq) and CHIPMIX is named Contamination (S+A) in this MultiQC report.

        VerifyBamID provides a series of information that is informative to determine whether the sample is possibly contaminated or swapped, but there is no single criteria that works for every circumstances. There are a few unmodeled factor in the estimation of [SELF-IBD]/[BEST-IBD] and [%MIX], so please note that the MLE estimation may not always exactly match to the true amount of contamination. Here we provide a guideline to flag potentially contaminated/swapped samples:

        • Each sample or lane can be checked in this way. When [CHIPMIX] >> 0.02 and/or [FREEMIX] >> 0.02, meaning 2% or more of non-reference bases are observed in reference sites, we recommend to examine the data more carefully for the possibility of contamination.
        • We recommend to check each lane for the possibility of sample swaps. When [CHIPMIX] ~ 1 AND [FREEMIX] ~ 0, then it is possible that the sample is swapped with another sample. When [CHIPMIX] ~ 0 in .bestSM file, [CHIP_ID] might be actually the swapped sample. Otherwise, the swapped sample may not exist in the genotype data you have compared.
        • When genotype data is not available but allele-frequency-based estimates of [FREEMIX] >= 0.03 and [FREELK1]-[FREELK0] is large, then it is possible that the sample is contaminated with other sample. We recommend to use per-sample data rather than per-lane data for checking this for low coverage data, because the inference will be more confident when there are large number of bases with depth 2 or higher.

        Copied from the VerifyBAMID documentation - see the link for more details.

        Showing 6/6 rows and 7/12 columns.
        Sample NameContamination (Seq)Read GroupSNPSM ReadsAverage DepthFREEELK1FREELK0
        RIH0_ANA0-HG002-19-10x
        0.552%
        NA
        100,000
        1.0
        10.3 X
        -313,464
        -317,565
        RIH0_ANA0-HG002-19-15x
        0.562%
        NA
        100,000
        1.5
        15.3 X
        -433,923
        -439,599
        RIH0_ANA0-HG002-19-20x
        0.561%
        NA
        100,000
        2.0
        20.2 X
        -549,494
        -558,052
        RIH0_ANA0-HG002-19-25x
        0.568%
        NA
        100,000
        2.5
        24.9 X
        -660,297
        -670,909
        RIH0_ANA0-HG002-19-30x
        0.584%
        NA
        100,000
        2.9
        29.3 X
        -762,057
        -774,400
        RIH0_ANA0-HG002-19-5x
        0.490%
        NA
        100,000
        0.5
        5.4 X
        -188,375
        -194,341

        Picard

        Picard is a set of Java command line tools for manipulating high-throughput sequencing data.

        Alignment Summary

        Please note that Picard's read counts are divided by two for paired-end data. Total bases (including unaligned) is not provided.

           
        loading..

        Mean read length

        The mean read length of the set of reads examined.

        loading..

        Base Distribution

        Plot shows the distribution of bases by cycle.

        loading..

        GC Coverage Bias

        This plot shows bias in coverage across regions of the genome with varying GC content. A perfect library would be a flat line at y = 1.

        loading..

        Insert Size

        Plot shows the number of reads at a given insert size. Reads with different orientations are summed.

        loading..

        Mean Base Quality by Cycle

        Plot shows the mean base quality by cycle.

        This metric gives an overall snapshot of sequencing machine performance. For most types of sequencing data, the output is expected to show a slight reduction in overall base quality scores towards the end of each read.

        Spikes in quality within reads are not expected and may indicate that technical problems occurred during sequencing.

        loading..

        Base Quality Distribution

        Plot shows the count of each base quality score.

        loading..

        mosdepth

        mosdepth performs fast BAM/CRAM depth calculation for WGS, exome, or targeted sequencing.DOI: 10.1093/bioinformatics/btx699.

        Cumulative coverage distribution

        Proportion of bases in the reference genome with, at least, a given depth of coverage

        For a set of DNA or RNA reads mapped to a reference sequence, such as a genome or transcriptome, the depth of coverage at a given base position is the number of high-quality reads that map to the reference at that position, while the breadth of coverage is the fraction of the reference sequence to which reads have been mapped with at least a given depth of coverage (Sims et al. 2014).

        Defining coverage breadth in terms of coverage depth is useful, because sequencing experiments typically require a specific minimum depth of coverage over the region of interest (Sims et al. 2014), so the extent of the reference sequence that is amenable to analysis is constrained to lie within regions that have sufficient depth. With inadequate sequencing breadth, it can be difficult to distinguish the absence of a biological feature (such as a gene) from a lack of data (Green 2007).

        For increasing coverage depths (1×, 2×, …, N×), coverage breadth is calculated as the percentage of the reference sequence that is covered by at least that number of reads, then plots coverage breadth (y-axis) against coverage depth (x-axis). This plot shows the relationship between sequencing depth and breadth for each read dataset, which can be used to gauge, for example, the likely effect of a minimum depth filter on the fraction of a genome available for analysis.

        loading..

        Coverage distribution

        Proportion of bases in the reference genome with a given depth of coverage

        For a set of DNA or RNA reads mapped to a reference sequence, such as a genome or transcriptome, the depth of coverage at a given base position is the number of high-quality reads that map to the reference at that position (Sims et al. 2014).

        Bases of a reference sequence (y-axis) are groupped by their depth of coverage (0×, 1×, …, N×) (x-axis). This plot shows the frequency of coverage depths relative to the reference sequence for each read dataset, which provides an indirect measure of the level and variation of coverage depth in the corresponding sequenced sample.

        If reads are randomly distributed across the reference sequence, this plot should resemble a Poisson distribution (Lander & Waterman 1988), with a peak indicating approximate depth of coverage, and more uniform coverage depth being reflected in a narrower spread. The optimal level of coverage depth depends on the aims of the experiment, though it should at minimum be sufficiently high to adequately address the biological question; greater uniformity of coverage is generally desirable, because it increases breadth of coverage for a given depth of coverage, allowing equivalent results to be achieved at a lower sequencing depth (Sampson et al. 2011; Sims et al. 2014). However, it is difficult to achieve uniform coverage depth in practice, due to biases introduced during sample preparation (van Dijk et al. 2014), sequencing (Ross et al. 2013) and read mapping (Sims et al. 2014).

        This plot may include a small peak for regions of the reference sequence with zero depth of coverage. Such regions may be absent from the given sample (due to a deletion or structural rearrangement), present in the sample but not successfully sequenced (due to bias in sequencing or preparation), or sequenced but not successfully mapped to the reference (due to the choice of mapping algorithm, the presence of repeat sequences, or mismatches caused by variants or sequencing errors). Related factors cause most datasets to contain some unmapped reads (Sims et al. 2014).

        loading..

        Average coverage per contig

        Average coverage per contig or chromosome

        loading..

        FastQC

        FastQC is a quality control tool for high throughput sequence data, written by Simon Andrews at the Babraham Institute in Cambridge.

        Sequence Counts

        Sequence counts for each sample. Duplicate read counts are an estimate only.

        This plot show the total number of reads, broken down into unique and duplicate if possible (only more recent versions of FastQC give duplicate info).

        You can read more about duplicate calculation in the FastQC documentation. A small part has been copied here for convenience:

        Only sequences which first appear in the first 100,000 sequences in each file are analysed. This should be enough to get a good impression for the duplication levels in the whole file. Each sequence is tracked to the end of the file to give a representative count of the overall duplication level.

        The duplication detection requires an exact sequence match over the whole length of the sequence. Any reads over 75bp in length are truncated to 50bp for this analysis.

        loading..

        Sequence Quality Histograms

        The mean quality value across each base position in the read.

        To enable multiple samples to be plotted on the same graph, only the mean quality scores are plotted (unlike the box plots seen in FastQC reports).

        Taken from the FastQC help:

        The y-axis on the graph shows the quality scores. The higher the score, the better the base call. The background of the graph divides the y axis into very good quality calls (green), calls of reasonable quality (orange), and calls of poor quality (red). The quality of calls on most platforms will degrade as the run progresses, so it is common to see base calls falling into the orange area towards the end of a read.

        loading..

        Per Sequence Quality Scores

        The number of reads with average quality scores. Shows if a subset of reads has poor quality.

        From the FastQC help:

        The per sequence quality score report allows you to see if a subset of your sequences have universally low quality values. It is often the case that a subset of sequences will have universally poor quality, however these should represent only a small percentage of the total sequences.

        loading..

        Per Base Sequence Content

        The proportion of each base position for which each of the four normal DNA bases has been called.

        To enable multiple samples to be shown in a single plot, the base composition data is shown as a heatmap. The colours represent the balance between the four bases: an even distribution should give an even muddy brown colour. Hover over the plot to see the percentage of the four bases under the cursor.

        To see the data as a line plot, as in the original FastQC graph, click on a sample track.

        From the FastQC help:

        Per Base Sequence Content plots out the proportion of each base position in a file for which each of the four normal DNA bases has been called.

        In a random library you would expect that there would be little to no difference between the different bases of a sequence run, so the lines in this plot should run parallel with each other. The relative amount of each base should reflect the overall amount of these bases in your genome, but in any case they should not be hugely imbalanced from each other.

        It's worth noting that some types of library will always produce biased sequence composition, normally at the start of the read. Libraries produced by priming using random hexamers (including nearly all RNA-Seq libraries) and those which were fragmented using transposases inherit an intrinsic bias in the positions at which reads start. This bias does not concern an absolute sequence, but instead provides enrichement of a number of different K-mers at the 5' end of the reads. Whilst this is a true technical bias, it isn't something which can be corrected by trimming and in most cases doesn't seem to adversely affect the downstream analysis.

        Click a sample row to see a line plot for that dataset.
        Rollover for sample name
        Position: -
        %T: -
        %C: -
        %A: -
        %G: -

        Per Sequence GC Content

        The average GC content of reads. Normal random library typically have a roughly normal distribution of GC content.

        From the FastQC help:

        This module measures the GC content across the whole length of each sequence in a file and compares it to a modelled normal distribution of GC content.

        In a normal random library you would expect to see a roughly normal distribution of GC content where the central peak corresponds to the overall GC content of the underlying genome. Since we don't know the the GC content of the genome the modal GC content is calculated from the observed data and used to build a reference distribution.

        An unusually shaped distribution could indicate a contaminated library or some other kinds of biased subset. A normal distribution which is shifted indicates some systematic bias which is independent of base position. If there is a systematic bias which creates a shifted normal distribution then this won't be flagged as an error by the module since it doesn't know what your genome's GC content should be.

        loading..

        Per Base N Content

        The percentage of base calls at each position for which an N was called.

        From the FastQC help:

        If a sequencer is unable to make a base call with sufficient confidence then it will normally substitute an N rather than a conventional base call. This graph shows the percentage of base calls at each position for which an N was called.

        It's not unusual to see a very low proportion of Ns appearing in a sequence, especially nearer the end of a sequence. However, if this proportion rises above a few percent it suggests that the analysis pipeline was unable to interpret the data well enough to make valid base calls.

        loading..

        Sequence Length Distribution

        All samples have sequences of a single length (151bp).

        Sequence Duplication Levels

        The relative level of duplication found for every sequence.

        From the FastQC Help:

        In a diverse library most sequences will occur only once in the final set. A low level of duplication may indicate a very high level of coverage of the target sequence, but a high level of duplication is more likely to indicate some kind of enrichment bias (eg PCR over amplification). This graph shows the degree of duplication for every sequence in a library: the relative number of sequences with different degrees of duplication.

        Only sequences which first appear in the first 100,000 sequences in each file are analysed. This should be enough to get a good impression for the duplication levels in the whole file. Each sequence is tracked to the end of the file to give a representative count of the overall duplication level.

        The duplication detection requires an exact sequence match over the whole length of the sequence. Any reads over 75bp in length are truncated to 50bp for this analysis.

        In a properly diverse library most sequences should fall into the far left of the plot in both the red and blue lines. A general level of enrichment, indicating broad oversequencing in the library will tend to flatten the lines, lowering the low end and generally raising other categories. More specific enrichments of subsets, or the presence of low complexity contaminants will tend to produce spikes towards the right of the plot.

        loading..

        Overrepresented sequences

        The total amount of overrepresented sequences found in each library.

        FastQC calculates and lists overrepresented sequences in FastQ files. It would not be possible to show this for all samples in a MultiQC report, so instead this plot shows the number of sequences categorized as over represented.

        Sometimes, a single sequence may account for a large number of reads in a dataset. To show this, the bars are split into two: the first shows the overrepresented reads that come from the single most common sequence. The second shows the total count from all remaining overrepresented sequences.

        From the FastQC Help:

        A normal high-throughput library will contain a diverse set of sequences, with no individual sequence making up a tiny fraction of the whole. Finding that a single sequence is very overrepresented in the set either means that it is highly biologically significant, or indicates that the library is contaminated, or not as diverse as you expected.

        FastQC lists all of the sequences which make up more than 0.1% of the total. To conserve memory only sequences which appear in the first 100,000 sequences are tracked to the end of the file. It is therefore possible that a sequence which is overrepresented but doesn't appear at the start of the file for some reason could be missed by this module.

        2 samples had less than 1% of reads made up of overrepresented sequences

        Adapter Content

        The cumulative percentage count of the proportion of your library which has seen each of the adapter sequences at each position.

        Note that only samples with ≥ 0.1% adapter contamination are shown.

        There may be several lines per sample, as one is shown for each adapter detected in the file.

        From the FastQC Help:

        The plot shows a cumulative percentage count of the proportion of your library which has seen each of the adapter sequences at each position. Once a sequence has been seen in a read it is counted as being present right through to the end of the read so the percentages you see will only increase as the read length goes on.

        loading..

        Status Checks

        Status for each FastQC section showing whether results seem entirely normal (green), slightly abnormal (orange) or very unusual (red).

        FastQC assigns a status for each section of the report. These give a quick evaluation of whether the results of the analysis seem entirely normal (green), slightly abnormal (orange) or very unusual (red).

        It is important to stress that although the analysis results appear to give a pass/fail result, these evaluations must be taken in the context of what you expect from your library. A 'normal' sample as far as FastQC is concerned is random and diverse. Some experiments may be expected to produce libraries which are biased in particular ways. You should treat the summary evaluations therefore as pointers to where you should concentrate your attention and understand why your library may not look random and diverse.

        Specific guidance on how to interpret the output of each module can be found in the relevant report section, or in the FastQC help.

        In this heatmap, we summarise all of these into a single heatmap for a quick overview. Note that not all FastQC sections have plots in MultiQC reports, but all status checks are shown in this heatmap.

        loading..

        goleft indexcov

        goleft indexcov quickly estimates coverage from a whole-genome bam index.DOI: 10.1093/gigascience/gix090.

        Scaled coverage ROC plot

        Coverage (ROC) plot that shows genome coverage at at given (scaled) depth.

        Lower coverage samples have shorter curves where the proportion of regions covered drops off more quickly. This indicates a higher fraction of low coverage regions.

        loading..

        Problem coverage bins

        This plot identifies problematic samples using binned coverage distributions.

        We expect bins to be around 1, so deviations from this indicate problems. Low coverage bins (< 0.15) on the x-axis have regions with low or missing coverage. Higher values indicate truncated BAM files or missing data. Bins with skewed distributions (<0.85 or >1.15) on the y-axis detect dosage bias. Large values on the y-axis are likely to impact CNV and structural variant calling. See the goleft indexcov bin documentation for more details.

        loading..

        Peddy

        Peddy calculates genotype :: pedigree correspondence checks, ancestry checks and sex checks using VCF files.DOI: 10.1016/j.ajhg.2017.01.017.

        PCA Plot

        loading..

        Het Check

        Proportion of sites that were heterozygous against median depth.

        A high proportion of heterozygous sites suggests contamination, a low proportion suggests consanguinity.

        See the main peddy documentation for more details about the het_check command.

        loading..

        Sex Check

        Predicted sex against heterozygosity ratio

        Higher values of Sex Het Ratio suggests the sample is female, low values suggest male.

        See the main peddy documentation for more details about the het_check command.

        loading..

        QualiMap

        QualiMap is a platform-independent application to facilitate the quality control of alignment sequencing data and its derivatives like feature counts.DOI: 10.1093/bioinformatics/btv566; 10.1093/bioinformatics/bts503.

        Coverage histogram

        Distribution of the number of locations in the reference genome with a given depth of coverage.

        For a set of DNA or RNA reads mapped to a reference sequence, such as a genome or transcriptome, the depth of coverage at a given base position is the number of high-quality reads that map to the reference at that position (Sims et al. 2014).

        Bases of a reference sequence (y-axis) are groupped by their depth of coverage (0×, 1×, …, N×) (x-axis). This plot shows the frequency of coverage depths relative to the reference sequence for each read dataset, which provides an indirect measure of the level and variation of coverage depth in the corresponding sequenced sample.

        If reads are randomly distributed across the reference sequence, this plot should resemble a Poisson distribution (Lander & Waterman 1988), with a peak indicating approximate depth of coverage, and more uniform coverage depth being reflected in a narrower spread. The optimal level of coverage depth depends on the aims of the experiment, though it should at minimum be sufficiently high to adequately address the biological question; greater uniformity of coverage is generally desirable, because it increases breadth of coverage for a given depth of coverage, allowing equivalent results to be achieved at a lower sequencing depth (Sampson et al. 2011; Sims et al. 2014). However, it is difficult to achieve uniform coverage depth in practice, due to biases introduced during sample preparation (van Dijk et al. 2014), sequencing (Ross et al. 2013) and read mapping (Sims et al. 2014).

        This plot may include a small peak for regions of the reference sequence with zero depth of coverage. Such regions may be absent from the given sample (due to a deletion or structural rearrangement), present in the sample but not successfully sequenced (due to bias in sequencing or preparation), or sequenced but not successfully mapped to the reference (due to the choice of mapping algorithm, the presence of repeat sequences, or mismatches caused by variants or sequencing errors). Related factors cause most datasets to contain some unmapped reads (Sims et al. 2014).

        loading..

        Cumulative genome coverage

        Percentage of the reference genome with at least the given depth of coverage.

        For a set of DNA or RNA reads mapped to a reference sequence, such as a genome or transcriptome, the depth of coverage at a given base position is the number of high-quality reads that map to the reference at that position, while the breadth of coverage is the fraction of the reference sequence to which reads have been mapped with at least a given depth of coverage (Sims et al. 2014).

        Defining coverage breadth in terms of coverage depth is useful, because sequencing experiments typically require a specific minimum depth of coverage over the region of interest (Sims et al. 2014), so the extent of the reference sequence that is amenable to analysis is constrained to lie within regions that have sufficient depth. With inadequate sequencing breadth, it can be difficult to distinguish the absence of a biological feature (such as a gene) from a lack of data (Green 2007).

        For increasing coverage depths (1×, 2×, …, N×), coverage breadth is calculated as the percentage of the reference sequence that is covered by at least that number of reads, then plots coverage breadth (y-axis) against coverage depth (x-axis). This plot shows the relationship between sequencing depth and breadth for each read dataset, which can be used to gauge, for example, the likely effect of a minimum depth filter on the fraction of a genome available for analysis.

        loading..

        Insert size histogram

        Distribution of estimated insert sizes of mapped reads.

        To overcome limitations in the length of DNA or RNA sequencing reads, many sequencing instruments can produce two or more shorter reads from one longer fragment in which the relative position of reads is approximately known, such as paired-end or mate-pair reads (Mardis 2013). Such techniques can extend the reach of sequencing technology, allowing for more accurate placement of reads (Reinert et al. 2015) and better resolution of repeat regions (Reinert et al. 2015), as well as detection of structural variation (Alkan et al. 2011) and chimeric transcripts (Maher et al. 2009).

        All these methods assume that the approximate size of an insert is known. (Insert size can be defined as the length in bases of a sequenced DNA or RNA fragment, excluding technical sequences such as adapters, which are typically removed before alignment.) This plot allows for that assumption to be assessed. With the set of mapped fragments for a given sample, QualiMap groups the fragments by insert size, then plots the frequency of mapped fragments (y-axis) over a range of insert sizes (x-axis). In an ideal case, the distribution of fragment sizes for a sequencing library would culminate in a single peak indicating average insert size, with a narrow spread indicating highly consistent fragment lengths.

        QualiMap calculates insert sizes as follows: for each fragment in which every read mapped successfully to the same reference sequence, it extracts the insert size from the TLEN field of the leftmost read (see the Qualimap 2 documentation), where the TLEN (or 'observed Template LENgth') field contains 'the number of bases from the leftmost mapped base to the rightmost mapped base' (SAM format specification). Note that because it is defined in terms of alignment to a reference sequence, the value of the TLEN field may differ from the insert size due to factors such as alignment clipping, alignment errors, or structural variation or splicing in a gap between reads from the same fragment.

        loading..

        GC content distribution

        Each solid line represents the distribution of GC content of mapped reads for a given sample.

        GC bias is the difference between the guanine-cytosine content (GC-content) of a set of sequencing reads and the GC-content of the DNA or RNA in the original sample. It is a well-known issue with sequencing systems, and may be introduced by PCR amplification, among other factors (Benjamini & Speed 2012; Ross et al. 2013).

        QualiMap calculates the GC-content of individual mapped reads, then groups those reads by their GC-content (1%, 2%, …, 100%), and plots the frequency of mapped reads (y-axis) at each level of GC-content (x-axis). This plot shows the GC-content distribution of mapped reads for each read dataset, which should ideally resemble that of the original sample. It can be useful to display the GC-content distribution of an appropriate reference sequence for comparison, and QualiMap has an option to do this (see the Qualimap 2 documentation).

        loading..

        Bcftools

        Bcftools contains utilities for variant calling and manipulating VCFs and BCFs.DOI: 10.1093/gigascience/giab008.

        Variant Substitution Types

        loading..

        Variant Quality

        loading..

        Indel Distribution

        loading..

        Samtools

        Samtools is a suite of programs for interacting with high-throughput sequencing data.DOI: 10.1093/bioinformatics/btp352.

        Percent Mapped

        Alignment metrics from samtools stats; mapped vs. unmapped reads.

        For a set of samples that have come from the same multiplexed library, similar numbers of reads for each sample are expected. Large differences in numbers might indicate issues during the library preparation process. Whilst large differences in read numbers may be controlled for in downstream processings (e.g. read count normalisation), you may wish to consider whether the read depths achieved have fallen below recommended levels depending on the applications.

        Low alignment rates could indicate contamination of samples (e.g. adapter sequences), low sequencing quality or other artefacts. These can be further investigated in the sequence level QC (e.g. from FastQC).

        loading..

        Alignment metrics

        This module parses the output from samtools stats. All numbers in millions.

        loading..

        Samtools Flagstat

        This module parses the output from samtools flagstat. All numbers in millions.

        loading..

        XY counts

        loading..

        Mapped reads per contig

        The samtools idxstats tool counts the number of mapped reads per chromosome / contig. Chromosomes with < 0.001% of the total aligned reads are omitted from this plot.

           
        loading..

        Run Time

        Run Time This analysis is about the MultiQC run itself, profiling the time spent on different parts of the MultiQC execution. It is designed to help developers optimise how they run MultiQC, to get the most efficient and fastest configuration possible. For more information, see the MultiQC documentation. .

        Files searched

        Number of files searched by MultiQC, categorised by what happened to them. Total file searches: 27524.

        Note that only files are considered in this plot - skipped directories are not shown.

        Some search patterns do not discard files after they match (shared: true), so it is possible that some files may be double-counted in this plot.

        • Skipped: No match - File was searched, but didn't match any search patterns
        • Skipped: Ignore pattern - File matched a MultiQC ignore pattern (see -x / --ignore / config.fn_ignore_paths)
        • Skipped: Filesize limit - File was skipped because it was too large (see config.log_filesize_limit)
        • Skipped: Symlinks - File was a symlink and skipped (see config.ignore_symlinks)
        • Skipped: Not a file - File could not be read (eg. was a unix pipe or something)
        loading..

        Search patterns

        Time spent running each search pattern to find files for MultiQC modules. Total file search time: 46.79 seconds.

        NOTE: Usually, MultiQC run time is fairly insignificant - in the order of seconds. Unless you are running MultiQC on many thousands of analysis files, optimising this process will have limited practical benefit.

        MultiQC works by recursively looking through all files found in the analysis directories. After skipping any that are too big / binary file types etc, it uses the search patterns defined in multiqc/utils/search_patterns.yaml. These work by matching either file names or file contents. Generally speaking, matching filenames is super fast and matching file contents is slower.

        Please see the MultiQC Documentation for information on how to optimise MultiQC to speed this process up. The plot below shows which search keys are running and how long each has taken to run in total. This should help to guide you to where optimisation is most worthwhile.

        loading..